Skip to contents

Constructs a time_series_model representing a stationary power-law process with parameters kappa and sigma2. In the frequency domain, a power-law process is often described by a spectrum \(P(f) = P_0 f^{\kappa}\) (Bos et al., 2008), where \(f\) is the frequency, \(P_0\) is a constant and \(\kappa\) is the spectral index. Note that we use the convention that the power spectral density satisfies \(P(f) \propto |f|^{\kappa}\), where \(\kappa > -1\) ensures second-order stationarity. This corresponds to the alternative notation \(P(f) \propto |f|^{-\alpha}\) with \(\alpha = -\kappa\). The autocovariance used here (Hosking, 1981) is \(\gamma(0) = \sigma^{2} \frac{\Gamma(1+\kappa)}{\Gamma\left(1+\kappa/2\right)^2}\), and for \(h > 0\) \(\gamma(h) =\mathrm{cov}(X_t, X_{t+h}) = \frac{-\kappa/2 + h - 1}{\kappa/2 + h}\,\gamma(h-1)\).

Usage

pl(kappa = NULL, sigma2 = NULL)

Arguments

kappa

Power-law parameter in (-1, 1). Use inv_trans_kappa_pl for unconstrained optimization.

sigma2

Process variance (> 0).

Value

A time_series_model object.

References

Bos MS, Fernandes RMS, Williams SDP, Bastos L (2008). "Fast error analysis of continuous GPS observations." Journal of Geodesy, 82, 157-166.

Hosking JRM (1981). "Fractional differencing." Biometrika, 68(1), 165-176.

Examples

mod <- pl(kappa = 0.5, sigma2 = 2)
mod
#> Stochastic process
#>   Model      : Stationary PowerLaw 
#>   Parameters : kappa =   0.5, sigma2 =     2