Skip to contents

Constructs a time_series_model for flicker noise with variance sigma2. The process has spectral density \(S(f) \propto \frac{1}{|f|}\). Hence, \(\kappa = -1\) (Bos et al., 2008). The process is non-stationary and its covariance matrix is assumed to be given by $$ \mathbf C = \sigma^2 \mathbf U^\top \mathbf U, $$ where \(\mathbf U \in \mathbb{R}^{N \times N}\) is an upper-triangular Toeplitz matrix with entries $$ U_{i,j} = \begin{cases} h_{j-i}, & j \ge i, \\ 0, & j < i, \end{cases} \qquad i,j = 1, \ldots, N. $$ The coefficients \(\{h_i\}_{i \ge 0}\) define a causal linear filter and are given recursively by $$ h_0 = 1, \qquad h_i = \left(i - \frac{\kappa}{2} - 1\right)\frac{h_{i-1}}{i}, \quad i > 0. $$

Usage

flicker(sigma2 = NULL)

Arguments

sigma2

Innovation variance (> 0).

Value

A time_series_model object.

References

Bos MS, Fernandes RMS, Williams SDP, Bastos L (2008). "Fast error analysis of continuous GPS observations." Journal of Geodesy, 82, 157-166.

Examples

mod <- flicker(sigma2 = 1)
mod
#> Stochastic process
#>   Model      : Flicker 
#>   Parameters : sigma2 =     1