Model and estimator

The gmwmx2 R package allows to estimate linear model with correlated residuals in presence of missing data.

More precisely, we assume the following model: ๐˜=๐—๐›ƒ+๐›†,๐›†โˆผโ„ฑ{๐šบ(๐›„)},\begin{equation} \boldsymbol{Y} = \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{F}\left\{\boldsymbol{\Sigma}\left(\boldsymbol{\gamma}\right)\right\}, \end{equation}

where ๐—โˆˆโ„nร—p\boldsymbol{X} \in \mathbb{R}^{n \times p} is a design matrix of observed predictors, ๐›ƒโˆˆโ„p\boldsymbol{\beta} \in \mathbb{R}^p is the regression parameter vector and ๐›†={ฮตi}i=1,โ€ฆ,n\boldsymbol{\varepsilon} = \{\varepsilon_{i}\}_{i=1,\ldots,n} is a zero-mean process following an unspecified joint distribution โ„ฑ\mathcal{F} with positive-definite covariance function ๐šบ(๐›„)โˆˆโ„nร—n\boldsymbol{\Sigma}(\boldsymbol{\gamma}) \in \mathbb{R}^{n\times n} characterizing the second-order dependence structure of the process and parameterized by the vector ๐›„โˆˆ๐šชโŠ‚โ„q\boldsymbol{\gamma} \in \boldsymbol{\Gamma} \subset \mathbb{R}^q.

We then define the a random variable ๐™={Zi}i=1,โ€ฆ,n\boldsymbol{Z} =\{Z_{i}\}_{i=1,\ldots,n} which describes the missing observation mechanism. More specifically, the vector ๐™โˆˆ{0,1}n\boldsymbol{Z} \in \{0, 1\}^n is a binary-valued stationary process independent of ๐˜\boldsymbol{Y} with expectation ฮผ(๐›)=๐”ผ[Zi]โˆˆ[0,1)\mu(\boldsymbol{\vartheta}) = \mathbb{E}[Z_i] \in [0, \, 1), โˆ€i\forall \, i, and covariance matrix ๐šฒ(๐›)=๐•[๐™]โˆˆโ„nร—n\boldsymbol{\Lambda}(\boldsymbol{\vartheta}) = \mathbb{V}[\boldsymbol{Z}] \in \mathbb{R}^{n\times n} whose structure is assumed known up to the parameter vector ๐›โˆˆ๐šผโŠ‚โ„k\boldsymbol{\vartheta} \in \boldsymbol{\Upsilon} \subset \mathbb{R}^k

We then assume that we only observe the stochastic process ๐˜ฬƒ=๐™โŠ™๐˜\tilde{\boldsymbol{Y}} = \boldsymbol{Z} \odot \boldsymbol{Y}, where โŠ™\odot denotes the Hadamard product. Hence, ๐˜ฬƒโˆˆโ„n=๐˜โŠ™๐™\tilde{\boldsymbol{Y}} \in \mathbb{R}^n = \boldsymbol{Y} \odot \boldsymbol{Z} represents the observed process vector with null elements in the positions where observations are missing.

Using โŠ—\otimes to denote the Kronecker product, we then define ๐—ฬƒ=๐™โŠ—๐ŸTโŠ™๐—โˆˆโ„nร—p\tilde{\boldsymbol{X}} = \boldsymbol{Z} \otimes \boldsymbol{1}^T \odot \boldsymbol{X} \in \mathbb{R}^{n \times p} as the design matrix ๐—\boldsymbol{X} with zero-valued vectors for the rows where observations are missing in ๐˜\boldsymbol{Y} (where ๐Ÿ\boldsymbol{1} represents a vector of ones of dimension pp).

We estimate the parameters ๐›ƒ\boldsymbol{\beta} with the least square estimator:

๐›ƒฬ‚=(๐—ฬƒT๐—ฬƒ)โˆ’1๐—ฬƒT๐˜ฬƒ.\begin{equation} \hat{\boldsymbol{\beta}} = \left(\tilde{\boldsymbol{X}}^T \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^T \tilde{\boldsymbol{Y}}. \end{equation}

We compute the estimated residuals as ๐›†ฬ‚=๐˜ฬƒโˆ’๐—ฬƒ๐›ƒฬ‚\hat{\boldsymbol{\varepsilon}} = {\tilde{\boldsymbol{Y}}} - \tilde{{\boldsymbol{X}}} \hat{\boldsymbol{\beta}}.

We then estimate with the Maximum Likelihood Estimator the parameters ๐›\boldsymbol{\vartheta} of the missingness process ๐™\boldsymbol{Z} assuming that ๐™\boldsymbol{Z} is generated from a Markov model with the following transition probabilities:

P(Z2=1โˆฃZ1=1)=1โˆ’p1P(Z2=1โˆฃZ1=0)=p2P(Z2=0โˆฃZ1=1)=p1P(Z2=0โˆฃZ1=0)=1โˆ’p2.\begin{equation} \label{eq:markov_model_def} \begin{aligned} & P\left( Z_2=1 \mid Z_1=1\right)=1 - p_1 \\ & P\left(Z_2=1 \mid Z_1=0\right) = p_2 \\ & P\left(Z_2=0 \mid Z_1=1\right)=p_1 \\ & P\left(Z_2=0 \mid Z_1=0\right)=1-p_2. \end{aligned} \end{equation}

We then estimate the parameters ๐›„\boldsymbol{\gamma} using a Generalized method of Wavelet Moments approach (Guerrier et al. 2013) and using the fact that the variance-covariance matrix of ๐›†ฬ‚\hat{\boldsymbol{\varepsilon}} is given by:

๐šบ๐›†ฬ‚(๐›„)=[๐šฒ(๐›ฬ‚)+ฮผ(๐›ฬ‚)2๐Ÿ๐ŸT]โŠ™(๐ˆโˆ’๐)๐šบ(๐›„)(๐ˆโˆ’๐)\boldsymbol{\Sigma}_{\hat{\boldsymbol{\varepsilon}}}(\boldsymbol{\gamma}) = [\boldsymbol{\Lambda}(\hat{\boldsymbol{\vartheta}}) + \mu(\hat{\boldsymbol{\vartheta}})^2 \mathbf{1} \mathbf{1}^T ] \odot ( \boldsymbol{I} - \boldsymbol{P})\boldsymbol{\Sigma}(\boldsymbol{\gamma}) (\boldsymbol{I} - \boldsymbol{P})

where ๐=๐—(๐—T๐—)โˆ’1๐—T\boldsymbol{P} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T and ๐ˆ\boldsymbol{I} is the identity matrix of dimension nร—nn\times n.

More precisely, we rely on the result of Xu et al. (2017) that provide a computationally efficient form of the theoretical Allan variance (equivalent to the Haar wavelet variance up to a constant) for zero-mean stochastic processes such as ๐›†\boldsymbol{\varepsilon} to avoid computing these large matrices multiplication in the objective function. Indeed in Xu et al. (2017) they generalize the results in Zhang (2008) to zero-mean non-stationary processes by using averages of the diagonals and super-diagonals of the covariance matrix of ๐›†\boldsymbol{\varepsilon}. What this implies is that the GMWM, which uses this form, does not require the storage of the nร—nn \times n covariance matrix of ๐›†\boldsymbol{\varepsilon}, but only of a vector of dimension nn which is then plugged into an explicit formula consisting in a linear combination of the elements of this vector (these elements being averages of the diagonal and super-diagonals of the covariance matrix).

Estimating tectonic velocities and crustal uplift

While the GMWMX as described above and in more details in Voirol et al. (2024), is a general method for estimating large linear model with complex dependence structure in presence of missing data, the gmwmx2 R package is currently developed specifically to estimate tectonic velocities from position times series in graticule distance coordinates system (GD) provided by the Nevada geodetic Laboratory (Blewitt 2024; Blewitt, Hammond, and Kreemer 2018).

Trajectory model

To estimate the trajectory model (see e.g., Bevis and Brown (2014) for more details), we construct the design matrix ๐—\boldsymbol{X} such that ii-th component of the vector ๐—๐›ƒ\mathbf{X} {{\boldsymbol{\beta}}} can be described as follows with tit_i representing the ithi^{th} ordered time point (epoch) indicated in Modified Julian Date and t0t_0 representing the reference epoch located exactly in the middle of start and end point of the time series:

๐”ผ[๐˜i]=๐—iT๐›ƒ=a+b(tiโˆ’t0)+โˆ‘h=1m[chsin(2ฯ€fhti)+dhcos(2ฯ€fhti)]+โˆ‘j=1rejH(tiโˆ’tj)+โˆ‘k=1slk[1โˆ’exp(โˆ’(tiโˆ’tk)ฯ„k)]H(tiโˆ’ฯ„k)\begin{split} \mathbb{E}[\mathbf{Y}_i] &= \mathbf{X}_i^T {{\boldsymbol{\beta}}} \\ &= a + b \left(t_{i} - t_0\right) + \sum_{h=1}^{m}\left[c_{h} \sin \left(2 \pi f_{h} t_{i}\right) + d_h \cos \left(2 \pi f_h t_i\right)\right] + \\& \sum_{j=1}^{r}e_j H\left(t_i - t_j\right) + \sum_{k = 1 }^{s} l_k \left[1- \exp\left(\frac{-(t_i-t_k)}{\tau_k}\right)\right]H\left(t_{i}-\tau_k\right) \end{split}

where aa is the initial position at the reference epoch t0t_0, bb is the velocity parameter, chc_h and dhd_h are the periodic motion parameters (h=1h = 1 and h=2h = 2 represent the annual and semi-annual seasonal terms, respectively with f1=1365.25f_1 = \frac{1}{365.25} and f2=2365.25f_2 = \frac{2}{365.25}). The offset terms models earthquakes, equipment changes or human intervention in which eje_j is the magnitude of the step at epochs tjt_j, rr is the total number of offsets, HH is the Heaviside step function defined as H(x):={1,xโ‰ฅ00,x<0H(x):= \begin{cases}1, & x \geq 0 \\ 0, & x<0\end{cases} and the last term allow to model post-seismic deformation (see e.g., Sobrero et al. (2020)) where ss is the number of post seismic relaxation time specified, tkt_k is the time when the relaxation kk starts in Modified Julian Date (MJD), ฯ„k\tau_k is the relaxation period in days for the post-seismic relaxation kk and lkl_k is the amplitude of the transient. Note that by default the estimates of the functional parameters are provided in unit/day.

When loading data from a specific station using the function gmwmx2::download_station_ngl(), we extract from the Nevada Geodetic Laboratory the position time series in GD coordinates, the time steps associated with a equipment or software change and the time steps associated with an earthquake near the station. All these objects are stored in a object of class gnss_ts_ngl.

When applying the function gmwmx2::gmwmx2() to an object of class gnss_ts_ngl, we construct the design matrix ๐—\boldsymbol{X} by considering an offset term for all equipment or software changes steps and all earthquakes indicated by the NGL. We also specify a post-seismic relaxation term for all earthquakes indicated by the NGL. If no relaxation time is specified in the argument vec_earthquakes_relaxation_time, we consider a default relaxation time of 365.25365.25 days.

Stochastic model

It is generally recognized that noise in GNSS time series is best described by a combination of colored noise plus white noise (He et al. 2017; Langbein 2008; Williams et al. 2004; Bos et al. 2013) where the white noise generally model noise at high frequencies and the colored noise model the lower frequencies of the spectrum. In a large study on the noise properties of GNSS signals, concluded that the optimal noise models for 80โ€“90% of GNSS time series signals are the power law and white noise model or white noise and flicker/pink noise with model. The package currently support both stochastic model specification.

More precisely, the power spectrum of a power-law noise has the following form: P(f)=P0(f/fs)ฮบ P(f)=P_0\left(f / f_s\right)^\kappa where ff is the frequency, P0P_0 is a constant, fsf_s the sampling frequency and the exponent ฮบ\kappa is called the spectral index.

Many stochastic noise can be expressed as such, for example, a spectral index ฮบ=0\kappa=0 produces a white noise, a spectral index ฮบ=โˆ’2\kappa=-2 produces a red noise or random walk and a spectral index ฮบ=โˆ’1\kappa=-1 produce a flicker noise, also called pink noise.

Granger (1980) and Hosking (1981) showed that power-law noise with a spectral index between โˆ’1-1 and 11 can be obtained by using fractional differencing of Gaussian noise:

(1โˆ’B)โˆ’ฮบ/2๐ฏ (1-B)^{-\kappa / 2} \mathbf{v}

where BB is the backward-shift operator (Bvi=viโˆ’1)\left(B v_i=v_{i-1}\right) and ๐ฏ\mathbf{v} a vector with independent and identically distributed (IID) Gaussian noise.

Following from Hoskingโ€™s definition of the fractional differencing, we obtain

(1โˆ’B)โˆ’ฮบ/2=โˆ‘i=0โˆž(โˆ’ฮบ/2i)(โˆ’B)i=1โˆ’ฮบ2Bโˆ’12ฮบ2(1โˆ’ฮบ2)B2+โ€ฆ=โˆ‘i=0โˆžhi \begin{aligned} (1-B)^{-\kappa / 2} & =\sum_{i=0}^{\infty}\binom{-\kappa / 2}{i}(-B)^i \\ & =1-\frac{\kappa}{2} B-\frac{1}{2} \frac{\kappa}{2}\left(1-\frac{\kappa}{2}\right) B^2+\ldots \\ & =\sum_{i=0}^{\infty} h_i \end{aligned} with the coefficient hih_i that can be computed using the following recurrence relation (Kasdin and Walter 1992):

h0=1hi=(iโˆ’ฮบ2โˆ’1)hiโˆ’1i for i>0 \begin{aligned} h_0 & =1 \\ h_i & =\left(i-\frac{\kappa}{2}-1\right) \frac{h_{i-1}}{i} \quad \text { for } i>0 \end{aligned}

Assuming an infinite sequence of zero-mean white noise ๐ฏ\mathbf{v}, with variance ฯƒPL2\sigma_{P L}^2, and a spectral index kappa>โˆ’1kappa > -1 then the autocovariance ฮณ(ฯ„)=Cov(Xt,Xt+ฯ„)=๐”ผ[(Xtโˆ’ฮผ)(Xt+ฯ„โˆ’ฮผ)]\gamma(\tau)=\operatorname{Cov}\left(X_t, X_{t+\tau}\right)=\mathbb{E}\left[\left(X_t-\mu\right)\left(X_{t+\tau}-\mu\right)\right] is (Bos et al. 2008):

ฮณ(0)=ฯƒpl2ฮ“(1โˆ’ฮฑ)(ฮ“(1โˆ’ฮฑ2))2ฮณ(ฯ„)=ฮฑ2+ฯ„โˆ’1โˆ’ฮฑฮฑ+ฯ„ฮณ(ฯ„โˆ’1) for ฯ„>0 \begin{aligned} & \gamma(0)=\sigma_{p l}^2 \frac{\Gamma(1-\alpha)}{\left(\Gamma\left(1-\frac{\alpha}{2}\right)\right)^2} \\ & \gamma(\tau)=\frac{\frac{\alpha}{2}+\tau-1}{-\frac{\alpha}{\alpha}+\tau} \gamma(\tau-1) \text { for } \tau>0 \end{aligned} When the argument stochastic_model is set to "wn + pl", the stochastic model considered includes both white noise and power-law with the specified above stationary autocovariance structure. The parameters estimated are: ฯƒWN2\sigma^2_{W N}, ฮบ\kappa (constrained to be greater than โˆ’1-1) and ฯƒPL2\sigma^2_{P L}.

When the argument stochastic_model is set to "wn + fl", the stochastic model considered includes both white noise and flicker noise (not stationary power-law noise with a spectral index ฮบ=โˆ’1\kappa=-1) where the variance covariance of the flicker noise ฯ‰\omega is obtained as follows (see e.g., (Bos et al. 2008)):

Cov(ฯ‰)=ฯƒFL2๐”T๐” \operatorname{Cov}(\omega) = \sigma^2_{F L}\mathbf{U}^T \mathbf{U}

where ๐”=(h0h1โ€ฆhn0h0hnโˆ’1โ‹ฎโ‹ฑโ‹ฎ00โ€ฆh0) \mathbf{U}=\left(\begin{array}{cccc} h_0 & h_1 & \ldots & h_n \\ 0 & h_0 & & h_{n-1} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \ldots & h_0 \end{array}\right) with the coefficients hih_i computed considering a spectral index ฮบ=โˆ’1\kappa=-1.

The stochastic parameters estimated are: ฯƒWN2\sigma^2_{W N}, ฯƒFL2\sigma^2_{F L} and ฮบ\kappa is fixed to โˆ’1-1.

Example of estimation

Let us showcase how to estimate the tectonic velocity in for one specific component (North, East or Vertical) of one station.

Let us first load the gmwmx2 package.

Download a station from Nevada Geodetic Laboratory

station_data <- download_station_ngl("CHML")

Plot Station

plot(station_data)

Plot Northing component

plot(station_data, component = "N")

Estimate model on station data

fit1 <- gmwmx2(station_data, n_seasonal = 2, component = "N", stochastic_model = "wn + pl")

Extract estimated parameters

summary(fit1)
## Summary of Estimated Model
## -------------------------------------------------------------
## Functional parameters
## -------------------------------------------------------------
## Parameter                  Estimate  Std_Deviation  95% CI Lower  95% CI Upper
## -------------------------------------------------------------
## Intercept               -0.70924596   0.00876879  -0.72643246  -0.69205945
## Trend                    0.00007198   0.00000833   0.00005565   0.00008831
## Sin (Annual)             0.00135377   0.00034179   0.00068387   0.00202367
## Cos (Annual)            -0.00062838   0.00036176  -0.00133741   0.00008065
## Sin (Semi-Annual)        0.00017180   0.00023845  -0.00029556   0.00063915
## Cos (Semi-Annual)        0.00030877   0.00024595  -0.00017328   0.00079082
## Jump: MJD 56248          0.01588617   0.00156627   0.01281633   0.01895601
## Jump: MJD 55391          0.00780478   0.00153504   0.00479616   0.01081339
## Jump: MJD 55563          0.00230763   0.00174920  -0.00112074   0.00573600
## Jump: MJD 55603          0.00286880   0.00237791  -0.00179182   0.00752942
## Jump: MJD 55606         -0.00044386   0.00351636  -0.00733580   0.00644808
## Jump: MJD 56011         -0.00008945   0.00165713  -0.00333736   0.00315846
## Jump: MJD 56085          0.00073436   0.00170239  -0.00260227   0.00407099
## Jump: MJD 56748         -0.00038578   0.00139555  -0.00312101   0.00234945
## Jump: MJD 57281         -0.00145742   0.00153903  -0.00447386   0.00155901
## Earthquake: MJD 55391    0.01576163   0.00742010   0.00121850   0.03030476
## Earthquake: MJD 55563    0.00174787   0.02573410  -0.04869004   0.05218579
## Earthquake: MJD 55603   -0.28371260   0.53172585  -1.32587612   0.75845092
## Earthquake: MJD 55606    0.27719703   0.52581943  -0.75339011   1.30778417
## Earthquake: MJD 56011   -0.00480858   0.01325307  -0.03078411   0.02116696
## Earthquake: MJD 56085   -0.00772227   0.01245006  -0.03212393   0.01667940
## Earthquake: MJD 56748   -0.00910404   0.00542215  -0.01973126   0.00152318
## Earthquake: MJD 57281   -0.02236505   0.00645616  -0.03501889  -0.00971122
## -------------------------------------------------------------
## Stochastic parameters
## -------------------------------------------------------------
##  White Noise Variance  :     0.00000122
##  Stationary powerlaw Spectral index:    -0.83907240
##  Stationary powerlaw Variance:     0.00000336
## -------------------------------------------------------------
## Missingness parameters
## -------------------------------------------------------------
##  P(Z_{i+1} = 0 | Z_{i} = 1): 0.00279460
##  P(Z_{i+1} = 1 | Z_{i} = 0): 0.31578947
##  \hat{E[Z]}: 0.99122807
## -------------------------------------------------------------
## Running time: 1.31 seconds
## -------------------------------------------------------------

By default, the estimated parameters are provided in m/day, we can optionally scale the estimated functional parameters so that they are returned in m/year with the argument scale_parameters.

summary(fit1, scale_parameters = TRUE)
## Summary of Estimated Model
## -------------------------------------------------------------
## Functional parameters
## -------------------------------------------------------------
## Parameter                  Estimate  Std_Deviation  95% CI Lower  95% CI Upper
## -------------------------------------------------------------
## Intercept              -259.05208570   3.20279877 -265.32945595 -252.77471545
## Trend                    0.02629027   0.00304291   0.02032629   0.03225426
## Sin (Annual)             0.49446304   0.12483968   0.24978175   0.73914432
## Cos (Annual)            -0.22951487   0.13213206  -0.48848895   0.02945921
## Sin (Semi-Annual)        0.06274864   0.08709451  -0.10795347   0.23345075
## Cos (Semi-Annual)        0.11277837   0.08983307  -0.06329122   0.28884795
## Jump: MJD 56248          5.80242306   0.57208186   4.68116322   6.92368289
## Jump: MJD 55391          2.85069445   0.56067178   1.75179795   3.94959095
## Jump: MJD 55563          0.84286159   0.63889600  -0.40935155   2.09507473
## Jump: MJD 55603          1.04782942   0.86853158  -0.65446119   2.75012003
## Jump: MJD 55606         -0.16211875   1.28435052  -2.67939950   2.35516201
## Jump: MJD 56011         -0.03267118   0.60526627  -1.21897127   1.15362890
## Jump: MJD 56085          0.26822620   0.62179917  -0.95047779   1.48693018
## Jump: MJD 56748         -0.14090556   0.50972464  -1.13994749   0.85813637
## Jump: MJD 57281         -0.53232443   0.56212924  -1.63407749   0.56942863
## Earthquake: MJD 55391    5.75693615   2.71019228   0.44505689  11.06881541
## Earthquake: MJD 55563    0.63841028   9.39938149 -17.78403892  19.06085948
## Earthquake: MJD 55603  -103.62602673 194.21286783 -484.27625302 277.02419955
## Earthquake: MJD 55606  101.24621682 192.05554589 -275.17573617 477.66816980
## Earthquake: MJD 56011   -1.75633307   4.84068270 -11.24389683   7.73123069
## Earthquake: MJD 56085   -2.82055781   4.54738426 -11.73326718   6.09215156
## Earthquake: MJD 56748   -3.32525134   1.98044104  -7.20684446   0.55634177
## Earthquake: MJD 57281   -8.16883558   2.35811162 -12.79064944  -3.54702173
## -------------------------------------------------------------
## Stochastic parameters
## -------------------------------------------------------------
##  White Noise Variance  :     0.00000122
##  Stationary powerlaw Spectral index:    -0.83907240
##  Stationary powerlaw Variance:     0.00000336
## -------------------------------------------------------------
## Missingness parameters
## -------------------------------------------------------------
##  P(Z_{i+1} = 0 | Z_{i} = 1): 0.00279460
##  P(Z_{i+1} = 1 | Z_{i} = 0): 0.31578947
##  \hat{E[Z]}: 0.99122807
## -------------------------------------------------------------
## Running time: 1.31 seconds
## -------------------------------------------------------------

Plot estimated model

plot(fit1)

fit2 <- gmwmx2(station_data, n_seasonal = 2, component = "N", stochastic_model = "wn + fl")
summary(fit2)
## Summary of Estimated Model
## -------------------------------------------------------------
## Functional parameters
## -------------------------------------------------------------
## Parameter                  Estimate  Std_Deviation  95% CI Lower  95% CI Upper
## -------------------------------------------------------------
## Intercept               -0.70924596   0.01136945  -0.73152967  -0.68696225
## Trend                    0.00007198   0.00001083   0.00005074   0.00009321
## Sin (Annual)             0.00135377   0.00043414   0.00050287   0.00220467
## Cos (Annual)            -0.00062838   0.00045622  -0.00152254   0.00026579
## Sin (Semi-Annual)        0.00017180   0.00027821  -0.00037348   0.00071707
## Cos (Semi-Annual)        0.00030877   0.00028861  -0.00025689   0.00087443
## Jump: MJD 56248          0.01588617   0.00191916   0.01212469   0.01964764
## Jump: MJD 55391          0.00780478   0.00182956   0.00421891   0.01139065
## Jump: MJD 55563          0.00230763   0.00190189  -0.00142001   0.00603527
## Jump: MJD 55603          0.00286880   0.00235741  -0.00175163   0.00748923
## Jump: MJD 55606         -0.00044386   0.00358112  -0.00746272   0.00657500
## Jump: MJD 56011         -0.00008945   0.00192695  -0.00386620   0.00368730
## Jump: MJD 56085          0.00073436   0.00199984  -0.00318524   0.00465397
## Jump: MJD 56748         -0.00038578   0.00187908  -0.00406870   0.00329714
## Jump: MJD 57281         -0.00145742   0.00187987  -0.00514189   0.00222704
## Earthquake: MJD 55391    0.01576163   0.00930876  -0.00248320   0.03400647
## Earthquake: MJD 55563    0.00174787   0.02766816  -0.05248072   0.05597647
## Earthquake: MJD 55603   -0.28371260   0.52755951  -1.31771023   0.75028503
## Earthquake: MJD 55606    0.27719703   0.52174624  -0.74540681   1.29980088
## Earthquake: MJD 56011   -0.00480858   0.01509158  -0.03438754   0.02477039
## Earthquake: MJD 56085   -0.00772227   0.01454627  -0.03623244   0.02078791
## Earthquake: MJD 56748   -0.00910404   0.00725836  -0.02333016   0.00512207
## Earthquake: MJD 57281   -0.02236505   0.00811536  -0.03827086  -0.00645925
## -------------------------------------------------------------
## Stochastic parameters
## -------------------------------------------------------------
##  White Noise Variance  :     0.00000193
##  Flicker Noise Variance:     0.00000251
## -------------------------------------------------------------
## Missingness parameters
## -------------------------------------------------------------
##  P(Z_{i+1} = 0 | Z_{i} = 1): 0.00279460
##  P(Z_{i+1} = 1 | Z_{i} = 0): 0.31578947
##  \hat{E[Z]}: 0.99122807
## -------------------------------------------------------------
## Running time: 1.09 seconds
## -------------------------------------------------------------
plot(fit2)

References

Bevis, Michael, and A. Brown. 2014. โ€œTrajectory Models and Reference Frames for Crustal Motion Geodesy.โ€ Journal of Geodesy 88 (283): 283--311.
Blewitt, Geoffrey. 2024. โ€œAn Improved Equation of Latitude and a Global System of Graticule Distance Coordinates.โ€ Journal of Geodesy 98 (1): 6.
Blewitt, Geoffrey, William Hammond, and Corn Kreemer. 2018. โ€œHarnessing the GPS Data Explosion for Interdisciplinary Science.โ€ Eos 99 (2): e2020943118.
Bos, MS, RMS Fernandes, SDP Williams, and L Bastos. 2008. โ€œFast Error Analysis of Continuous GPS Observations.โ€ Journal of Geodesy 82 (3): 157โ€“66.
โ€”โ€”โ€”. 2013. โ€œFast Error Analysis of Continuous GNSS Observations with Missing Data.โ€ Journal of Geodesy 87 (4): 351โ€“60.
Granger, Clive WJ. 1980. โ€œLong Memory Relationships and the Aggregation of Dynamic Models.โ€ Journal of Econometrics 14 (2): 227โ€“38.
Guerrier, Stรฉphane, Jan Skaloud, Yannick Stebler, and Maria-Pia Victoria-Feser. 2013. โ€œWavelet-Variance-based Estimation for Composite Stochastic Processes.โ€ Journal of the American Statistical Association 108 (503): 1021โ€“30.
He, Xiaoxing, Jean-Philippe Montillet, Rui Fernandes, Machiel Bos, Kegen Yu, Xianghong Hua, and Weiping Jiang. 2017. โ€œReview of Current GPS Methodologies for Producing Accurate Time Series and their Error Sources.โ€ Journal of Geodynamics 106: 12โ€“29.
Hosking, JRM. 1981. โ€œFractional Differencing. Biometrika, 68 (1), 165โ€“176.โ€
Kasdin, N Jeremy, and Todd Walter. 1992. โ€œDiscrete Simulation of Power Law Noise (for Oscillator Stability Evaluation).โ€ In Proceedings of the 1992 IEEE Frequency Control Symposium, 274โ€“83. IEEE.
Langbein, John. 2008. โ€œNoise in GPS Displacement Measurements from Southern California and Southern Nevada.โ€ Journal of Geophysical Research: Solid Earth 113 (B5): 1โ€“12. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007JB005247.
Sobrero, Franco S, Michael Bevis, Demiรกn D Gรณmez, and Fei Wang. 2020. โ€œLogarithmic and Exponential Transients in GNSS Trajectory Models as Indicators of Dominant Processes in Postseismic Deformation.โ€ Journal of Geodesy 94 (9): 84.
Voirol, Lionel, Haotian Xu, Yuming Zhang, Luca Insolia, Roberto Molinari, and Stรฉphane Guerrier. 2024. โ€œInference for Large Scale Regression Models with Dependent Errors.โ€ arXiv Preprint arXiv:2409.05160.
Williams, Simon DP, Yehuda Bock, Peng Fang, Paul Jamason, Rosanne M Nikolaidis, Linette Prawirodirdjo, Meghan Miller, and Daniel J Johnson. 2004. โ€œError Analysis of Continuous GPS Position Time Series.โ€ Journal of Geophysical Research: Solid Earth 109 (B3).
Xu, Haotian, Stรฉphane Guerrier, Roberto Molinari, and Yuming Zhang. 2017. โ€œA Study of the Allan Variance for Constant-mean Nonstationary Processes.โ€ IEEE Signal Processing Letters 24 (8): 1257โ€“60.
Zhang, Nien Fan. 2008. โ€œAllan Variance of Time Series Models for Measurement Data.โ€ Metrologia 45 (5): 549.