load_estimate_compare_models.Rmd
.mom
file as a gnssts
object
Let us first load the gmwmx
package.
library(gmwmx)
Consider that you want to estimate a model on data saved in a
.mom
file located at a specific file_path
on
your computer, where file_path
is the path where is located
the .mom
file (for example
file_path = "/home/name_of_the_user/Documents/data.mom"
)
For example, the corresponding .mom
file could have a
similar looking:
# sampling period 1.000000
# offset 55285.000000
# offset 58287.770833
52759.5 -0.01165
52760.5 -0.01102
52761.5 -0.01147
...
You can import the .mom
file as a with the function
read.gnssts()
as such:
data_dobs = read.gnssts(filename = file_path)
Objects created or imported with create.gnss()
or
read.gnssts()
are of class gnssts
.
class(data_dobs)
## [1] "gnssts"
By inspecting the structure of a gnssts
object, we
observe that gnssts
objects specify the time vector, the
observation vector, the sampling period and the times at which there are
location shifts (jumps).
str(data_dobs)
## List of 4
## $ t : num [1:5559] 52760 52760 52762 52764 52766 ...
## $ y : num [1:5559] -0.0117 -0.011 -0.0115 -0.0131 -0.0106 ...
## $ sampling_period: num 1
## $ jumps : num [1:2] 55285 58288
## - attr(*, "class")= chr "gnssts"
We can represent the signal as such:
plot(data_dobs$t, data_dobs$y, type="l")
The gmwmx
package allows to estimate linear model with
correlated residuals that are described by a functional model and a
stochastic noise model.
More precisely, for the functional model, we consider a linear model which can be expressed as:
$$\begin{equation} \mathbf{Y} = \mathbf{A} {{\bf x}}_0 + \boldsymbol{\varepsilon}, \end{equation}$$
where $\mathbf{Y} \in {\rm I\!R}^n$ denotes the response variable of interest (i.e., vector of GNSS observations), $\mathbf{A} \in {\rm I\!R}^{n \times p}$ a fixed design matrix, ${{\bf x}}_0 \in \mathcal{X} \subset {\rm I\!R}^p$ a vector of unknown constants and $\boldsymbol{\varepsilon} \in {\rm I\!R}^n$ a vector of (zero mean) residuals.
The gmwmx
package allows to estimate functional models
for which the
-th
component of the vector $\mathbf{A} {{\bf
x}}_0$ can be described as follows:
$$\begin{equation} \mathbb{E}[\mathbf{Y}_i] = \mathbf{A}_i^T {{\bf x}}_0 = a+b\left(t_{i}-t_{0}\right)+\sum_{h=1}^{2}\left[c_{h} \sin \left(2 \pi f_{h} t_{i}\right)+d_{h} \cos \left(2 \pi f_{h} t_{i}\right)\right] + \sum_{k=1}^{n_{g}} g_{k} H\left(t_{i}-t_{k}\right), \end{equation}$$
where is the initial position at the reference epoch , is the velocity parameter, and are the periodic motion parameters ( and represent the annual and semi-annual seasonal terms, respectively). The offset terms models earthquakes, equipment changes or human intervention in which is the magnitude of the change at epochs , is the total number of offsets, and is the Heaviside step function. Note that the estimates of the parameters of the functional model are provided in unit/day.
Regarding the stochastic model, we assume that is a strictly (intrinsically) stationary process and that
where denotes some probability distribution in ${\rm I\!R}^n$ with mean ${\bf 0}$ and covariance .
We assume that and that it depends on the unknown parameter vector $\boldsymbol{\gamma}_0 \in \boldsymbol{\Gamma} \subset {\rm I\!R}^q$. This parameter vector specifies the covariance of the observations and is often referred to as the stochastic parameters.
Hence, we let $\boldsymbol{\theta}_0 = \left[\boldsymbol{{\bf x}}_0^{\rm T} \;\; \boldsymbol{\gamma}_0^{\rm T}\right]^{\rm T} \in \boldsymbol{\Theta} = \mathcal{X} \times \boldsymbol{\Gamma} \subset {\rm I\!R}^{p + k}$ denote the unknown parameter vector of the model described above.
The gmwmx
allows to estimate parameters of a specified
functional model as well as parameters of a stochastic model
(i.e.ย )
defined by a combinations of
wn
)matern
)fgn
) andpowerlaw
).Note that only the gmwmx
current version accepts only
one process of each kind.
You can estimate a model using the GMWMX estimator with the function
estimate_gmwmx()
.
The stochastic model considered is specified by a string provided to
the argument model_string
which is a combination of the
strings wn
, powerlaw
, matern
and
fgn
separated by the character +
.
You specify the initialization values for solving the optimization
problem at the GMWM estimation step that estimate the stochastic model
by providing a numeric vector of the correct length (the total number of
parameters of the stochastic model specified in
model_string
) to the argument theta_0
.
You can compute confidence intervals for estimated functional
parameters of an estimated model by setting the argument ci
to TRUE
.
Let us consider a single sinusoidal signal with the jumps specified
in the gnssts
object and a combination of a White noise and
a Power Law process for the stochastic model.
fit_dobs_wn_plp_gmwmx = estimate_gmwmx(x = data_dobs, theta_0 = c(0.1, 0.1, 0.1),
model_string = "wn+powerlaw",
n_seasonal = 1, ci = T)
Estimated models are of class gnsstsmodel
class(fit_dobs_wn_plp_gmwmx)
## [1] "gnsstsmodel"
We can print the estimated model or extract estimated parameters (functional and stochastic) as such:
print(fit_dobs_wn_plp_gmwmx)
## GNSS time series model
##
## * Model: wn + powerlaw
##
## * Functional parameters:
## bias : +0.012013 +/- 0.0200366449
## trend : +0.000008 +/- 0.0000001991
## A*cos(U) : -0.000655 +/- 0.0000754528
## A*sin(U) : +0.000016 +/- 0.0000762463
## jump : -0.003758 +/- 0.0005738092
## jump : +0.001568 +/- 0.0006045750
##
## * Stochastic parameters:
## wn_sigma2 : +0.00000079
## powerlaw_sigma2 : +0.00000025
## powerlaw_d : +0.49990000
##
## * Estimation time: 1.66 s
fit_dobs_wn_plp_gmwmx$beta_hat
## bias trend A*cos(U) A*sin(U) jump
## 1.201297e-02 8.351512e-06 -6.553985e-04 1.578605e-05 -3.758074e-03
## jump
## 1.567881e-03
fit_dobs_wn_plp_gmwmx$theta_hat
## wn_sigma2 powerlaw_sigma2 powerlaw_d
## 7.916985e-07 2.525867e-07 4.999000e-01
We can also plot graphically the estimated functional model on the
time series and the Wavelet variance of residuals by calling the
plot.gnsstsmodel
method on a gnsstsmodel
object.
plot(fit_dobs_wn_plp_gmwmx)
We can specify the number of iterations of the GMWMX to compute
respectively the GMWMX-1 and GMWMX-2 or other iteration of the GMWMX
with the argument k_iter
. For example we can compute the
GMWMX-2 as such:
fit_dobs_wn_plp_gmwmx_2 = estimate_gmwmx(x = data_dobs,
theta_0 = c(0.1, 0.1, 0.1),
model_string = "wn+powerlaw",
n_seasonal = 1,
k_iter = 2)
Assuming that you have Hector available on the PATH
, an
estimation of the model can the be performed using the Maximum
Likelihood Estimation (MLE) method implemented in Hector as such:
fit_dobs_wn_plp_mle = estimate_hector(x = data_dobs,
model_string = "wn+powerlaw",
n_seasonal = 1)
Similarly we can plot and extract the model parameters of the estimated model:
plot(fit_dobs_wn_plp_mle)
fit_dobs_wn_plp_mle$beta_hat
## bias trend A*cos(U) A*sin(U) jump
## 1.200000e-02 8.451006e-06 -6.672690e-04 1.359080e-06 -4.194170e-03
## jump
## 9.071300e-04
fit_dobs_wn_plp_mle$theta_hat
## wn_sigma2 powerlaw_sigma2 powerlaw_d
## 7.779727e-07 2.700504e-07 4.854970e-01
We can load time series data from the Plate
Boundary Observatory (PBO) as gnssts
object with
PBO_get_station()
:
cola = PBO_get_station("COLA", column = "dE")
Let us consider three potential models for the stochastic model of this signal. More precisely let us consider:
fit_cola_wn_plp = estimate_gmwmx(cola, model_string = "wn+powerlaw",
theta_0 = c(0.1,0.1,0.1),
n_seasonal = 1,
ci = T)
plot(fit_cola_wn_plp)
fit_cola_wn_fgn = estimate_gmwmx(cola, model_string = "wn+fgn", theta_0 = c(0.1,0.1,0.2),
n_seasonal = 1,
ci = T)
plot(fit_cola_wn_fgn)
fit_cola_wn_matern = estimate_gmwmx(cola, model_string = "wn+matern",
theta_0 = c(0.1,0.1,0.1,0.1),
n_seasonal = 1,
ci = T)
plot(fit_cola_wn_matern)
You can compare estimated models with the function
compare_fits()
compare_fits(fit_cola_wn_plp, fit_cola_wn_matern)
## Warning in compare_fits(fit_cola_wn_plp, fit_cola_wn_matern): Provided fits do
## not esimate the same model.