Estimate the parameters of time series models based on the Allan Variance Linear Regression (AVLR) approach
avlr(x, ...) # S3 method for default avlr(x, qn = NULL, wn = NULL, rw = NULL, dr = NULL, ci = FALSE, B = 100, alpha = 0.05, ...) # S3 method for imu_avar avlr(x, qn_gyro = NULL, wn_gyro = NULL, rw_gyro = NULL, dr_gyro = NULL, qn_acc = NULL, wn_acc = NULL, rw_acc = NULL, dr_acc = NULL, B = 100, alpha = 0.05, ...)
x | A |
---|---|
... | Further arguments passed to other methods. |
qn | A |
wn | A |
rw | A |
dr | A |
ci | A |
B | A |
alpha | A |
qn_gyro | A |
wn_gyro | A |
rw_gyro | A |
dr_gyro | A |
qn_acc | A |
wn_acc | A |
rw_acc | A |
dr_acc | A |
If the input x
is a vec
, then the function returns a list
that contains:
"estimates": The estimated value of the parameters.
"implied_ad": The Allan deviation implied by the estimated parameters.
"implied_ad_decomp": The Allan deviation implied by the estimated parameters for each individual model (if more than one is specified).
"av": The avar
object computed from the provided data.
If the input x
is of the class imu_avar
, then the function returns a list
that contains:
"gyro": The estimation results correseponding to the gyroscope component.
"acc": The estimation results correseponding to the accelerometer component.
"imu_av": The imu_avar
object computed based on the IMU data.
# Input time series fit = avlr(Xt, wn = 1:8, rw = 11:15) fit#> #> Estimates: #> Value #> WN 1.013398300 #> RW 0.001508291# Input directly Allan variance fit = avlr(av, wn = 1:8, rw = 11:15) fit#> #> Estimates: #> Value #> WN 1.013398300 #> RW 0.001508291