Displays plots of multiple wavelet variances of different time series accounting for CI values.

compare_wvar(
  ...,
  split = FALSE,
  add_legend = TRUE,
  units = NULL,
  xlab = NULL,
  ylab = NULL,
  main = NULL,
  col_wv = NULL,
  col_ci = NULL,
  nb_ticks_x = NULL,
  nb_ticks_y = NULL,
  legend_position = NULL,
  ci_wv = NULL,
  point_cex = NULL,
  point_pch = NULL,
  names = NULL,
  cex_labels = 0.8
)

Arguments

...

One or more time series objects.

split

A boolean that, if TRUE, arranges the plots into a matrix-like format.

add_legend

A boolean that, if TRUE, adds a legend to the plot.

units

A string that specifies the units of time plotted on the x axes. Note: This argument will not be used if xlab is specified.

xlab

A string that gives a title for the x axes.

ylab

A string that gives a title for the y axes.

main

A string that gives an overall title for the plot.

col_wv

A string that specifies the color of the wavelet variance lines.

col_ci

A string that specifies the color of the confidence interval shade.

nb_ticks_x

An integer that specifies the maximum number of ticks for the x-axis.

nb_ticks_y

An integer that specifies the maximum number of ticks for the y-axis.

legend_position

A string that specifies the position of the legend (use legend_position = NA to remove legend).

ci_wv

A boolean that determines whether confidence interval polygons will be drawn.

point_cex

A double that specifies the size of each symbol to be plotted.

point_pch

A double that specifies the symbol type to be plotted.

names

A string that specifies the name of the WVAR objects.

cex_labels

A double that specifies the magnification of the labels (x and y).

Examples

set.seed(999) n = 10^4 Xt = arima.sim(n = n, list(ar = 0.10)) Yt = arima.sim(n = n, list(ar = 0.35)) Zt = arima.sim(n = n, list(ar = 0.70)) Wt = arima.sim(n = n, list(ar = 0.95)) wv_Xt = wvar(Xt) wv_Yt = wvar(Yt) wv_Zt = wvar(Zt) wv_Wt = wvar(Wt) compare_wvar(wv_Xt, wv_Yt, wv_Zt, wv_Wt)