Calculates the (MO)DWT wavelet variance
wvar(x, ...) # S3 method for lts wvar( x, decomp = "modwt", filter = "haar", nlevels = NULL, alpha = 0.05, robust = FALSE, eff = 0.6, to.unit = NULL, ... ) # S3 method for gts wvar( x, decomp = "modwt", filter = "haar", nlevels = NULL, alpha = 0.05, robust = FALSE, eff = 0.6, to.unit = NULL, ... ) # S3 method for ts wvar( x, decomp = "modwt", filter = "haar", nlevels = NULL, alpha = 0.05, robust = FALSE, eff = 0.6, to.unit = NULL, ... ) # S3 method for imu wvar( x, decomp = "modwt", filter = "haar", nlevels = NULL, alpha = 0.05, robust = FALSE, eff = 0.6, to.unit = NULL, ... ) # S3 method for default wvar( x, decomp = "modwt", filter = "haar", nlevels = NULL, alpha = 0.05, robust = FALSE, eff = 0.6, freq = 1, from.unit = NULL, to.unit = NULL, ... )
x | A |
---|---|
... | Further arguments passed to or from other methods. |
decomp | A |
filter | A |
nlevels | An |
alpha | A |
robust | A |
eff | A |
to.unit | A |
freq | A |
from.unit | A |
A list
with the structure:
"variance": Wavelet Variance
"ci_low": Lower CI
"ci_high": Upper CI
"robust": Robust active
"eff": Efficiency level for Robust calculation
"alpha": p value used for CI
"unit": String representation of the unit
The default value of nlevels
will be set to \(\left\lfloor {{{\log }_2}\left( {length\left( x \right)} \right)} \right\rfloor\), unless otherwise specified.
#> Variance Low CI High CI #> 2 0.45217782 0.316045047 0.7004281 #> 4 0.23033971 0.140751059 0.4440086 #> 8 0.13710252 0.069880858 0.3811887 #> 16 0.05160384 0.020543745 0.2878292 #> 32 0.01172383 0.003282007 0.3685303# Robust wvar(x, robust = TRUE, eff=0.3)#> Variance Low CI High CI #> 2 0.549798561 0.247597207 1.1008897 #> 4 0.239947099 0.069559083 0.6463224 #> 8 0.131799969 0.013817225 0.5602029 #> 16 0.061956778 0.013817225 0.5797696 #> 32 0.007484438 0.003742219 0.4233586# Classical wvar(x, robust = FALSE, eff=0.3)#> Variance Low CI High CI #> 2 0.45217782 0.316045047 0.7004281 #> 4 0.23033971 0.140751059 0.4440086 #> 8 0.13710252 0.069880858 0.3811887 #> 16 0.05160384 0.020543745 0.2878292 #> 32 0.01172383 0.003282007 0.3685303# 90% Confidence Interval wvar(x, alpha = 0.10)#> Variance Low CI High CI #> 2 0.45217782 0.334461347 0.6516656 #> 4 0.23033971 0.152096918 0.3978812 #> 8 0.13710252 0.077666345 0.3200430 #> 16 0.05160384 0.023732362 0.2119612 #> 32 0.01172383 0.004018555 0.1908247