Create a gts
object based on a time series model.
gen_gts(
n,
model,
start = 0,
end = NULL,
freq = 1,
unit_ts = NULL,
unit_time = NULL,
name_ts = NULL,
name_time = NULL
)
An integer
containing the length of the time series.
A ts.model
or simts
object containing the available models in the simts package.
A numeric
that provides the time of the first observation.
A numeric
that provides the time of the last observation.
A numeric
that provides the rate of samples. Default value is 1.
A string
that contains the unit expression of the time series. Default value is NULL
.
A string
that contains the unit expression of the time. Default value is NULL
.
A string
that provides an identifier for the time series data. Default value is NULL
.
A string
that provides an identifier for the time. Default value is NULL
.
A gts
object
This function accepts either a ts.model
object (e.g. AR1(phi = .3, sigma2 =1) + WN(sigma2 = 1)) or a simts
object.
# Set seed for reproducibility
set.seed(1336)
n = 1000
# AR1 + WN
model = AR1(phi = .5, sigma2 = .1) + WN(sigma2=1)
x = gen_gts(n, model)
plot(x)
# Reset seed
set.seed(1336)
# GM + WN
# Convert from AR1 to GM values
m = ar1_to_gm(c(.5,.1),10)
# Beta = 6.9314718, Sigma2_gm = 0.1333333
model = GM(beta = m[1], sigma2_gm = m[2]) + WN(sigma2=1)
x2 = gen_gts(n, model, freq = 10, unit_time = 'sec')
plot(x2)
# Same time series
all.equal(x, x2, check.attributes = FALSE)
#> [1] TRUE