ar1_to_wv.Rd
This function computes the Haar WV of an AR(1) process
ar1_to_wv(phi, sigma2, tau)
phi | A |
---|---|
sigma2 | A |
tau | A |
A vec
containing the wavelet variance of the AR(1) process.
This function is significantly faster than its generalized counter part
arma_to_wv
.
The Autoregressive Order \(1\) (AR(\(1\))) process has a Haar Wavelet Variance given by: $$\frac{{2{\sigma ^2}\left( {4{\phi ^{\frac{{{\tau _j}}}{2} + 1}} - {\phi ^{{\tau _j} + 1}} - \frac{1}{2}{\phi ^2}{\tau _j} + \frac{{{\tau _j}}}{2} - 3\phi } \right)}}{{{{\left( {1 - \phi } \right)}^2}\left( {1 - {\phi ^2}} \right)\tau _j^2}}$$